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Assuming that r0^>rij (for all i and j), one sets 

/ « C1+ (L «*)A][l+(L jS*/r)l (29) 

and obtains from (26) 

^ 2 = ( E ^ ) E f t ) 4 K i 2 - M . (30) 
Hence, this additional minimal surface exists (and is 
nearly spherical) whenever the inequalities 

mN+i^>rih wiN+i2> I QN+I I, (31) 

are satisfied. The remaining N sheets also have their 
associated minimal surfaces; however, these are highly 
distorted, so that one must resort to numerical solution 
of the variational principle (24) to locate them. Figures 
4 and 5 display the results of such a numerical investiga­
tion for the special case N—2 and m\=m%y qi = q2 = 0. 

It can be shown that the minimal surfaces are elongated 

1. INTRODUCTION 

A GENERALIZED Hartree-Fock method has been 
proposed by Bogoliubov1 and Valatin2 for investi­

gating the quantum-mechanical problem posed by cer­
tain Hamiltonians of the form 

E= I dxdx'\l/*(x)e(xx')\f/(x')-\— / dxdxldxxdxi 

X^ix^ixOWixx'XiXx^ix^ixi). (1) 

The letter x denotes the space and spin coordinates of 
a single particle, while \f/ is the usual field operator 
which may be written 

*=?o, (2) 
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2 J. G. Valatin, Phys. Rev. 122, 1012 (1961). 

slightly along the lines joining them.10 This type of 
distortion is just what one might expect by analogy with 
Newtonian tidal forces; indeed, the magnitude of the 
distortion is inversely proportional to the cube of the 
separation distance u, in the Newtonian limit, and 
increases as the ratio of mass to separation distance is 
increased. Thus, the deviation of each minimal surface 
from spherical symmetry provides another way to 
estimate the interaction between the N particles. 
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where £ is a column vector of orthonormal single-
particle wave functions and a is a column vector of the 
corresponding destruction operators. We use the nota­
tion that £T denotes the transpose of £. 

In the approach of Bogoliubov one specifies a set £ 
and introduces a new set of creation and destruction 
operators through the transformation 

a=Ua+Va*, (3) 

where U and V denote matrices operating on column 
vectors of destruction and creation operators as indi­
cated. The requirements that the a's and the a's both 
satisfy the usual fermion anticommutation rules lead to 
certain conditions on U and V which may be written 
simply in the present notation as 

W*T+VV*T=I, UVT+VUT=0. (4) 

The procedure is then to define a trial variational wave 
function ty(U,V) through 

a*=0 , (5) 

and calculate the corresponding energy. The latter 
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An algorithm is provided for writing down explicitly all solutions of the density matrix-pairing tensor 
equations which arise in the generalized Bogoliubov-Valatin transformation approach to superconductivity 
theory. Certain simpler special cases are then examined. Finally reasons are given indicating that our 
solutions should provide a practical computational tool in many-body theory. 



D E N S I T Y M A T R I X - P A I R I N G T E N S O R E Q U A T I O N S 477 

turns out to be 

X \_F K\Kl'F K2K2' & K.2K\'F KlKi' +3>K 1 K 3VK 2 ' 1 (6) 

where e(iac') and W(KIK2KIK2) are matrix elements com­
puted with respect to the orbitals of £ in the standard 
way while 

F=F*F T , $=UVT. (7) 

The important point to note at this stage is that F 
and $, respectively, the density matrix and the pairing 
tensor,3 conveniently specify the energy and are, there­
fore, more desirable to work with than U and V. It, 
thus, becomes necessary to replace the conditions (4) 
by equivalent requirements on F and <£>. These turn out 
to be1'3 the symmetry properties 

FT=F*, $ T = - $ , (8) 

together with the conditions 

$*$=F2—F, $F=F*$. (9) 

The latter are alternatively written as 

/I-F* $\ 
K2 = K, K= ). (90 

\ - # * F) 

On the other hand, the point of view put forward by 
Valatin is that the transformations can be greatly 
simplified by judicious choice of basic set and he uses 
the special Bogoliubov-Valatin4 transformation but also 
allows the variation of the orbitals. The essential equiva­
lence of the two methods has been demonstrated gen­
erally in the recent paper of Bloch and Messiah3 using 
transformation theory based on (2) and (7). 

The present work is motivated by the observation 
that in either Bogoliubov's or Valatin's approach, the 
solution of the Euler equations resulting from minimiza­
tion of the energy is bedevilled by awkward subsidiary 
conditions. This must surely be the reason why no 
applications seem yet to have been reported. It would 
be desirable then to be able to write down explicitly 
F's and 3>'s automatically satisfying (8) and (9). The 
minimization of (6) could then be carried out without 
restriction. Our intention, therefore, is to investigate 
solutions of (8) and (9) for an arbitrary fixed basis. 

The crucial step which does not seem to have been 
taken hitherto is to observe that the requirements (4) 
can be replaced by the unitarity condition 

fU V \/U V \*T / I 0\ 

\V*U*J\V*U*) \0 1/ 

Quite apart from its use for our stated objective, the 
latter is a simplifying tool in the general theory. As an 

example of this, it has been thought worthwhile at this 
point to establish the asserted equivalence of (4) to 
(8) and (9), thus making our account self contained. 

2. THE STATUS OF THE DENSITY MATRIX-
PAIRING TENSOR EQUATIONS 

First, let us suppose (4) holds and F and $ are denned 
by (7). Then FT=F* follows from the definition, while 
$T——$ results almost as easily using the second of 

Eqs. (4). Finally, since I ^ r - J is unitary and ( n n ) 

is idempotent, then 

fU V \ / I 0\ /U V \*T fU U*T U VT\ 

Ky*U*T y* 

/U V \ / I 0\ /U V \*T /I 

\V*U*J \0 0/ \F*£7*/ W*Z7*r V*VT) 

3 C. Bloch and A. Messiah, Nucl. Phys. 39, 95 (1962). 

is also idempotent. The latter, however, on using (4) 
turns out to be just K as given by (9r) and this com­
pletes half the proof. 

Now suppose (8) and (9) hold. We wish to show then 
that there exist suitable matrices U and V satisfying 
(4) and such that F and <£ can be written in the form 
(7). We begin by observing that since K is idempotent 
its only eigenvalues are 0 or 1. Furthermore, there is a 
one-one correspondence between the latter, since 

/I-F* $\ /A\ /A\ 

U X)=1(J <"> 
is equivalently written as 

/ I - F * $ \ /B\ /B\ 

U. X)-0C> (12) 

the assumption A = B leading to a contradiction. Thus, 
since K is easily seen to be Hermitian it has the 

canonical form f ^ ^ J introduced previously under uni­

tary transformation. In an obvious partitioning we may 

introduce the matrices U, V, P, and Q through the 

identity 

n-t- . x / 1 7 P W I o w * py 
\ - $ * FJ \V* QJ\O O/\V* Q/ 

Multiplying out the latter gives just the right-hand 
side of (10) and comparison of elements leads to (8) 
and (4). 

3. SOLUTIONS OF THE DENSITY MATRIX-PAIRING 
TENSOR EQUATIONS 

In the present development we have emphasized 
that the Bogoliubov conditions (4) can be replaced by 
(4'). It is the latter unitarity condition which provides 
us with an algorithm for writing down all solutions of 
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(8) and (9). Quite generally, we have 

fU V \ fO <t> < 

Kcf>* 

f U V \ /0 *\ 
= exp ), (14) 

\V*U*J \6*0*J where 
(15) 

The general character of these equations follows from 
unitarity, while the particular symmetry of the left 
side of (14) determines that of the right. The procedure, 
then, is to choose any 6 and <j> consistent with (15), 
calculate U(Brf>) and V(d,<j>) from (14) and then F(d,4>) 
and $(0,0) from (7). The first few terms of such de­
velopments may be written 

1 1 
c7=I+0+-(0 2+00*)+- • •, 7=0+-(0<H-00*)+-

2! 2! 

and 
(16) 

F= -0*<£H—(0*00*- 0*0*0) H , 
2! 

1 
$ = - 0 + - ( 0 0 * - 0 0 ) + . . . , (17) 

2! 

and clearly as many terms can be evaluated as re­
quired. (Throughout, convergence of infinite series has 
been assumed whenever necessary.) 

The remainder of this section is concerned with 
special cases where analytical treatment can be carried 
further. Let us begin by considering what happens if 
one of 0 and 0 vanishes. The case 0 = 0 is uninteresting 
since this gives a no-particle system in which F and <£ 
vanish. 

The case 0=0, however, is of considerable interest. 
Here, we have 

1 1 
^ o = = I + _ ^ * + „ ( ( W > * ) 2 + . . . scoshfe**)1'2' (18) 

2! 4! 
and 

1 1 
7°=<H—00*0H—00*00*0H 

3! 5! 
s [sinh (00*)1/2] (0/0*)1/2 (19) 

and, thus, 
F°=-sinh2(0*0)1/2,M 

* = - §[sinh2 (00*)1/2] (0/0*)1/2. (20) 

The interpretation of these equations is straightforward 
when 0 is real. In the complex case a little care has to 
be exercised. 

It is readily seen that the usual special pairing 
description4 is included in the treatment of the previous 
paragraph, for if we make the particular choice 

<t>KK' — $K-K'<l>IC, 0 - K (21) 

one may check without difficulty that the series (18) 
and (19) can be summed and one finds the results 

FKK>0=5KK> s i n 2 | 0 K | , 
$«'°= — &K-A sin2|0K| exp(* arg0^). (22) 

These fairly standard results are usually quoted in real 
form but seem always to be taken as above in the 
literature5 on the proposed superfluid phase of He3, for 
example, where use of the complex case appears to be 
mandatory. 

The case 0 ^ 0 is, thus, seen to be necessary in the 
class of problem we have in mind. The further question 
then remains of how to choose 05^0 so as to proceed 
beyond the approximation (20). We have obtained the 
following result which tells us rather how not to choose 0. 

Suppose both 0 and 0 are nonvanishing but 00=00*. 
Then we assert that the class (20) is obtained once 
more, the results being independent of 0. Before pro­
ceeding to the proof a comment on this result is in 
place. Broadly speaking, it blocks a large number of 
prima facie promising avenues. To mention but one, 
the use of antisymmetric matrices in the construction 
of orthogonal matrices is well known. It might, there­
fore, seem reasonable when dealing with real matrices 
to choose 0 and 0 as arbitrary odd functions of an arbi­
trary antisymmetric matrix, the conditions (15) then 
being fulfilled. Unfortunately so is the commutative 
property and our result applies. 

Our assertion is proved by observing that by our 

hypothesis ( ~ ^ j and f * ? J commute and, thus, 

the right side of (14) may be written as 

exp (° *ur °) 
\ 0 * 0 / \ 0 0*/ 

/U° VQ \/exp0 0 \ 

Vp* i/o*J\ 0 exp0*/ 
(23) 

This leads to values for U and V of U° exp0 and V° exp0*, 
respectively. On computing the corresponding F and $ 
and invoking the anti-Hermitian property (15) of 0 
we obtain once more the forms (20). 

4. FURTHER QUESTIONS 

In view of past experience in many-body perturba­
tion theory,6 it is fair to ask whether in any application, 

4 N. N. Bogoliubov, Nuovo Cimento 7, 795 (1958); J. G, 
Valatin, ibid. 7, 843 (1958). 

5 See, for example, P. W. Anderson and P. Morel, Phys. Rev. 
123, 1911 (1961). 

6 One might mention, for example, the well-known divergencies 
in the perturbation series for a high-density electron gas which 
are only removed after reclassification and resummation of terms 
drawn from all orders [M. Gell-Mann and K. A. Brueckner, 
Phys. Rev. 106, 364 (1957)]. Besides this, there exists the un­
resolved question of the effect perturbation theory has on the 
analytical properties of the momentum-distribution function 
[L. Van Hove, Suppl. Physica 26, 200 (I960)]. 
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the termination of the series (17) after only a finite 
number of terms is likely to affect profoundly the 
analytical nature of our solution. Furthermore, even if 
this does not happen, are we likely to obtain quantita­
tively reasonable results? We believe that both these 
questions can be answered optimistically and support 
this viewpoint by taking the one example—the original 
case considered by Bardeen, Cooper and Schrieffer7 

(B.C.S.)—where the above kind of treatment when 
infinite sums are taken is known8 to furnish essentially 
the exact solution, and calculating what happens by 
terminating our series at an early stage. 

The details of this problem have been extensively 
discussed and need not be dwelt on. We simply state 
that we are considering the reduced Hamiltonian char­
acterized by single-particle energies eK measured relative 
to the Fermi level and a constant average attractive 
matrix element — F/fll for pairs (K, — K) making transi­
tions in the energy region | e| <fio>. The exact solution 
is got using (22) in real form. One finds the well-
known physical situation characterized by a gap in the 
single-particle excitation spectrum of size 2A where 

N(0)Vsmhr1(fi<a/A)=l. (24) 

Here A (̂0) is the familiar density-of-states factor 
evaluated at the Fermi surface. 

On the other hand, suppose we attempt to assess the 
situation by cutting off terms in (20) and working con­
sistently to second order. Then (22) is replaced by 

ZV=S«'(*.2+"-), 
$ M ' = - 5 M ' ( 0 « - f * « 8 + - • •), (220 

and these lead to the Euler equation 

V A 

,. - E l*«'N-, 
1 — 24>K

2 QeK\eK'\<n<» eK 

(25) 

this integral equation serving also to define a quantity 
A now, however, no longer equal to that of (24). 
Nevertheless, following closely the analysis of B.C.S., 
we find that 2A again represents the energy gap in the 
present approximation and that the same qualitative 
physical picture emerges. The value of A is straight-

7 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

8 N . N. Bogoliubov, Suppl. Physica 26, 1 (1960). 

N(0)V 

FIG. 1. Indication of the variation of energy gap A with 
coupling N(o)V for the B.C.S. model. Curve I is exact while 
curve II is our first order approximation to it. 

forwardly shown to be given by 

N(0)Vl-x2+x(l+x2)1f2+smh-1x2= 1, 
*=*6>/V2A. (26) 

To assess the quantitative accuracy of the approxi­
mation we need only compare (24) and (26). In the 
large x region of interest in superconductors, the agree­
ment is remarkable considering the quite crude nature 
of our approximation. We have 

sinh-1 (feo/A) = \nx+1.04+1/ (8x2)+0 (x~4), (27) 

while 

— x2+x(l+x2)1/2-\-smh~1x 
= lno;+1.19+l/(8x2)+0(^-4). (28) 

Outside this region good results are again obtained as 
the graph indicates. 

Our conclusion is, therefore, that our solutions (17), 
quite apart from solving a general theoretical problem 
in principle, provide us also with a promising computa­
tional tool. The need now is to apply them in their 
generality to some specific problem and this matter is 
under consideration. 
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